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Background

The field of astronomy has recently benefited from the availability of space telescopes. The

Hubble Space Telescope, for instance, despite its problems, provides a unique attd valuable

view on the universe. However, unlike HST, a telescope need not be in low Earth orbit to

escape our thickening atmosphere: it is currently technologically feasible to put a telescope

on the moon, and there are excellent reasons for doing so (Genet, et al, 1991). Either in

low Earth orbit or on the moon, a space telescope represents an expensive and sought-after

resource. Thus, the planning, scheduling, and control of these telescopes is an important

problem that nmst be seriously studied.

The recurrent costs involved with space telescope management can be enormous, so it

makes sense to attempt to automate infrastructure operations wherever possible. Automa-

tion can be expected to lead to lower operating costs, greater safety, and, if properly imple-

mented, greater freedom for astronomers to pursue their scientific goals. In one sense, we

seek to enhance existing operations by reducing cost, by increasing safety, and by increasing

accountability. We also seek to enable a greater diversity of operational modes by providing

an opportunity for scientists to interact with telescopes in new and productive ways.

Recurrent Operations

In abstract terms, the management infrastructure that surrounds a space telescope is respon-

sible for the planning, scheduling, and control of the telescope's operations. The business of

planning is that of selecting particular observation activities that are likely to gather desired

data (to prove an hypothesis, perhaps). Thus, planning is about selecting observations to

achieve goals. Scheduling is the task of sequencing a pre-selected set of observations. A

scheduling system must take into account all constraints on observation ordering, and find

a (hopeflflly) optimal schedule that satisfies all constraints. This is not an easy task, as the

observation requests are typically generated by a variety of astronomers, and the constraints

on their ordering are subtle and complex. Telescope control (at a high level) is the business

of executing a schedule, carrying out desired observations, and gathering data.

Existing automation does address some subset of these functions. For instance, schedul-

ing has been studied for many years, and a number of scheduling systems are conlmercially

available. Various shortcomings of most avMlable products have given rise to a "new gen-

eration" of scheduling systems and tools (for instance, Zweben, Deale, & Gargan, 1990;

Liu, 1988; Biefeld & Cooper, 1991), and some of these have been applied to the problem of

scheduling observations on space telescopes (for instance, Johnston, 1990; Muscettola, et al,

1992). While some of these systems have achieved great success on the isolated scheduling

problem, they do not completely address the prior problem of telescope observation planning.

This is not surprising, since planning, in its full generality, is an extremely hard problem.

However, some successes have been achieved (Currie & Tate, 1991; Muscettola, et aI, 1992),

and we feel that it is now possible to design and build a combined planning and scheduling



systemfor integrated telescopeoperations.

Outstanding Research Problems

There are a number of outstanding research problems, grounded in functionality not provided

by the current generation of scheduling systems. Existing schedulers cannot manage the

disjunction that is inherent in conditional schedules. One requires a conditional schedule

whenever the future cannot be precisely predicted. For instance, an astronomer might wish

to execute one of a given set of observations, the exact observation to be selected depending

on the results of an immediately prior observation. This is not possible in a scheduler that

commits to a single, non-disjunctive representation of time. There are other issues that are

unaddressed by current technology, but space precludes detailed discussion. These problems

include effective control of the search required to build a schedule, probabilistic estimates

of schedule robustness, and tracking relevant environmental conditions to enable automatic

rescheduling as required by exogenous environmental change.

•Project Goals

We are seeking to demonstrate a number of new functional capabilities in this project. Space

precludes a detailed discussion, so this section attempts to describe only one particular

functional goal.

In terms of planning, we are initially concentrating on photometry; that is, measuring

light-quanta as a function of time. We are working with an astronomer who is looking for

Earth-sized planets around Sun-sized stars. Our astronomer uses photometric techniques

to detect when a planet moves between its local star and the Earth. As observed from

Earth, such a transit would give rise to a characteristic light curve. Thus, our astronomer

can express an hypothesis about a given planet and star as such a light curve: if data can

be gathered that is consistent with this hypothesis, then to some extent the hyt)othesis has

been proven; however, if data is gathered that deviates significantly from the prediction,

then the hypothesis must be revised. The traditional mechanism for proving or disproving

such an hypothesis is for the astronomer to translate the simple light curve into a long list

of desired observations. Each observation corresponds to a point on the light curve where

there is currently insufficient data. Since the light curve repeats infinitely into the future,

our astronomer is forced to produce a potentially large number of observation requests that

correspond to precisely the same point on his hypothesized light curve. Traditional schedul-

ing techniques require this conversion from light curve to observation set, since scheduling

is the business of sequencing the elements of such sets. Traditional scheduling techniques

have nothing usefill to say about a light curve hypothesis, since the number of observation

requests that can be generated by such a curve cannot be bounded in advance.

We are proposing a system that can accept a light curve hypothesis from an astronomer



and use this light curve to generateand scheduleobservationrequests. Our systemshould
be able to comparedata obtained under previous observationswith what is predicted by
the hypothesis. At a given point in time tile data gatheredup to this point will give rise
to one of two cases:either the data is consistentwith the hypothesis,in which casesome
next observation should be generatedand scheduled;or the data is inconsistent with the
hypothesis,in which casethe astronomershouldbe notified and askedfor a new hypothesis.
This approach suggeststhat the businessof schedulingis not simply looking ahead and
sequencingpre-selectedactions. A schedulermust additionally "rememberbehind" so that
it canselectobservingactions that are relevant to the scientific task at hand.

Filling out light curves is simply one example illustrating the importance of having a
model of the scientist's goals,hypotheses,or expectations. Previous work in planning has
studied the useof experiment templates,or "skeletalplans", and demonstrated that science
often operatesaccordingto a small number of highly parameterizedprocedures(Friedland
& Iwasaki, 1985). While this skeletalplanning work wasdonein the domain of molecular
genetics,we feel that the sameinsight appliesto astronomy.We expect to be able to find a
reasonablysmall munber of procedural templates,and will study how thesecan be usedas
a specificationlanguagefor our phmning and schedulingsystem.

Current Status, Plans

We plan to implement an integrated planning, scheduling, and control system for a 16-inch

photoelectric telescope. We are using our existing theory and general architecture as a guide

(Bresina & Drummond, 1990; Drummond, Bresina, & Kedar, 1991; Drmnmond & Bresina,

1990a; Drummond & Bresina, 1990b). To keep things simple, we are initially focusing purely

on photometry (Genet L: Hayes, 1989; Hall & Genet, 1988). We are doing this to better focus

the class of scientific goals considered. Since we are attempting to implement automation

that addresses the entire telescope planning, scheduling, and control problem, we feel it is

reasonable to simplify the science goals somewhat. We have access to a telescope simulator

and plan on evaluating our system's performance against this in the first instance. Once the

system achieves acceptable levels of performance on the simulator, we plan to deploy it on

the real telescope, and we will make this teIescope available to the astronomical community.

Our goal is to have our system available via the InterNet, such that interested astronomers

can simply Email observation request files; we hope to be able to provide overnight results

from the telescope via return Email. Interested parties should contact the authors for more

information.
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